ORIENTATION PACKET

for those new to the PCAC Emissions Report

Table of Contents

Why Emissions Reports?	Page 2
PCAC Plants Exempt from Reporting and Reasons Why	Page 2
Common Acronyms	Page 3
Report Contents	Page 3
Sources of Air Pollution	Page 4
Plant Sources of Air Emissions	Page 4-5
Where Data Come from	Pages 6-9
Where Numbers Come From	Pages 10-13
Numbers Change from Year-to-Year	Page 13
Houston-Galveston-Brazoria area NOx and VOC emissions	Pages 14-15
Resources	Page 16
Emissions and Air Monitoring Acronyms and Terms	Pages 16-21

Why Emissions Reports?

Learn what CAC plants release to air

Including pollutants contributing to ozone

Help public learn about chemicals in the community

Tool for helping CAC hold plants accountable

Plants may learn from their own reports and others

PCAC Plants Exempt from Reporting and Reasons Why

TCEQ Emissions Inventory (EI)

Evonik: Site's "potential to emit" is below the threshold of a major source requiring reporting

EPA Toxics Release Inventory (TRI)

Reporting not required for type of industry

Gulf Coast Authority

Terminals that do not produce products.

- **❖** ITC
- Kinder Morgan Export Terminal
- Kinder Morgan Liquids Terminal

Common Acronyms

EPA – US Environmental Protection Agency

TCEQ – Texas Commission on Environmental Quality

EI – TCEQ Air Emissions Inventory

TRI – EPA Toxics Release Inventory

NOx – Nitrogen Oxides

VOCs – Volatile Organic Compounds

HRVOC – Highly Reactive Volatile Organic Compounds

SOx – Sulfur Oxides

TSP – Total Suspended Particulates

CO – Carbon monoxide

TAR – Turnaround

Additional Acronyms starting on page 15

Report Contents

TCEQ Air Emissions Inventory (EI)

Overall trends, plant-specific data, reasons for change

EPA Toxics Release Inventory (TRI)

Overall trends, plant-specific data, reasons for change

Comparisons for EI and TRI

- 5 Year from 2018 to 2022
- 1 year from 2021 to 2022

5- and 10-year averages

Sources of Air Pollution

All Air Pollutants

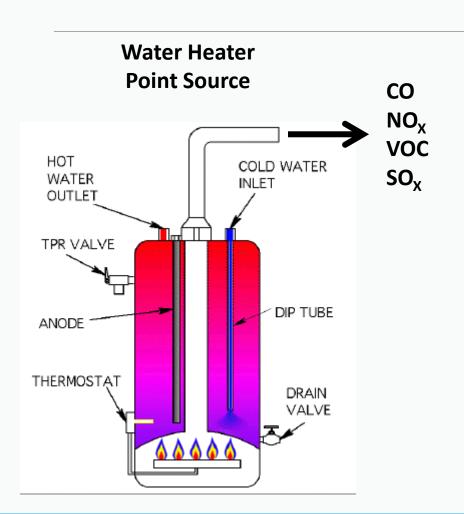
TCEQ Air Emissions Inventory (EI)

> EPA Toxics Release Inventory (TRI-Air)

Sources include...

- Industry -- Chemical,
 petroleum refining,
 electric generation
- Transportation -- Cars and trucks, marine, aviation and trains. Off-road vehicles (construction)
- Other -- Small Businesses, homes
- Biogenic Sources --Vegetation, fires, dust

Plant Sources of Air Emissions


From: boilers, heaters, cooling towers, flares, loading & unloading, process vents, tanks, engines, vessels, wastewater treatment. . .

During: routine permitted activities (includes maintenance, startup and shutdown), upsets, spills. . .

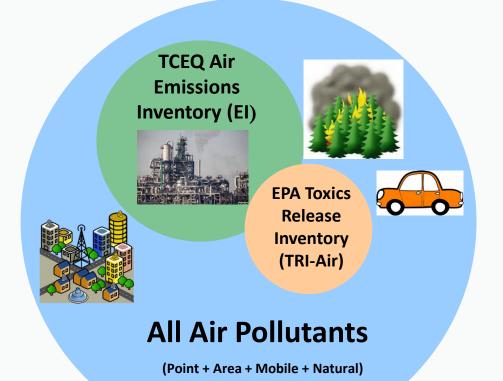
Including:

- Point sources
- Fugitive emissions

Point vs. Fugitive Emission Sources



Gas Meter
13 Fugitive Sources


Point vs. Fugitive Emission Sources

Where Data Come From

Industry Reporting of Air Emissions

El and TRI Overlap

Not to scale

Data from Two Inventories

TCEQ Air Emissions Inventory (EI)

- Reported by major sources annually to Texas Commission on Environmental Quality (TCEQ)
- Just air -- all air releases of covered pollutants

EPA Toxics Release Inventory (TRI)

- Reported annually to Environmental Protection Agency (EPA) by plants in certain kinds of business if plant has chemicals on TRI list above a set amount.
- Releases to environment (air, land, water) and transfers off the plant site for further waste treatment or disposal.
- PCAC report includes only TRI Releases to Air

Comparing El vs. TRI

Air Emissions Inventory (EI)

- State requirement (TCEQ)
- Contaminants released to Air
- Required for permitting and compliance
- Almost all air contaminants (even small quantities)

Toxics Release Inventory (TRI)

- Federal requirement (EPA)
- Contaminants released to air, water, and land
- Required for public right-to-know
- Approx. 820 chemicals that exceed specific thresholds

Both reports

- Include point source and fugitive emission values
- Calculation methods including direct measurements, engineering estimates, and agency factors
- Include permitted and upset emissions
- Can show useful trends
- Small facilities are exempted

Requirements for El Reporting

A plant must submit an EI if it meets any one of the following:

- Major Source
- In Harris County and emits at least 10 tons per year (tpy) VOC, 25 tpy NOx, or 100 tpy of any other contaminant
- Emits more than 0.5 tpy of lead (Pb)
- Potential to emit 10 tpy of a single (25 tpy aggregate) hazardous air pollutant
- Subject to a special inventory

Criteria Air Pollutants in El

4 of the criteria air pollutants- subject to National Ambient Air Quality Standards (NAAQS)

- Nitrogen Oxides (NOx)- ozone precursor
- Sulfur Oxides (SOx)
- Carbon Monoxide (CO)
- Total Suspended Particulates (TSP)/PM 2.5

Volatile Organic Compounds (VOCs)- ozone precursors subject to other rules

 Highly Reactive VOCs (HRVOCs), a subset of VOCs, contribute more to ozone formation

Requirements for TRI Reporting

Plants must report if:

- the chemicals used in their processes are covered by the TRI program (approximately 820 chemicals)
- othe plant makes more than 25,000 lbs. of a TRI chemical in a year
- othe plant uses more than 10,000 lbs. of the TRI chemical in a year

TRI for EPA vs. PCAC

PCAC looks only at TRI releases to air to keep the report simple

Plant reports to EPA include

- Releases to environment (air, land, water)
- Transfers off the plant site for further waste management or disposal

Ex: recycling or use as fuel, or landfilling Internal recycling, reduction of emissions at the source, etc.

Pollution Prevention Information

Where Numbers Come From

Where Numbers Come From

Combination of *measurements* and *estimates*

Measurements from Continuous Emissions Monitoring Systems (CEMS), stack and vent tests, lab analysis, and other direct measurements

Estimates from calculations based on fuel consumption, mass balance of process, engineering calculations, throughput formulas, flow measurements, inventory loss, production data, and field surveys

- Fugitives often estimated by EPA's AP-42 factors
- Direct measurements may be incorporated into calculations

Changing calculation methods

- Improves accuracy
- Affects emissions numbers positively or negatively

Measurements

Continuous Emission Monitoring System (CEMS)

Only available for certain kinds of emissions

Most accurate way to quantify emissions

....and the most expensive to install & maintain

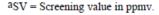
Emissions Measurement Example

NOx emissions calculations basis

- NOx and CO CEMS data (concentration, ppmvd)
- Exhaust gas flow rate (dscfm)
- Molecular weight (lb/lb-mol)

Boiler NOx example:

```
\frac{\text{C }_{\text{ppmvd}} * \text{MW }_{\text{lb/lb-mol}} * \text{Q }_{\text{dscfm}} * 60 \text{ min/hr}}{\text{V}_{\text{ideal gas, cf/lb-mol}}} = \text{lb/hr}
\frac{17.86 * 46.1 * 19,150 * 60}{386.5 * 10^{6}} = 2.45 \text{ lb/hr NOx}
```

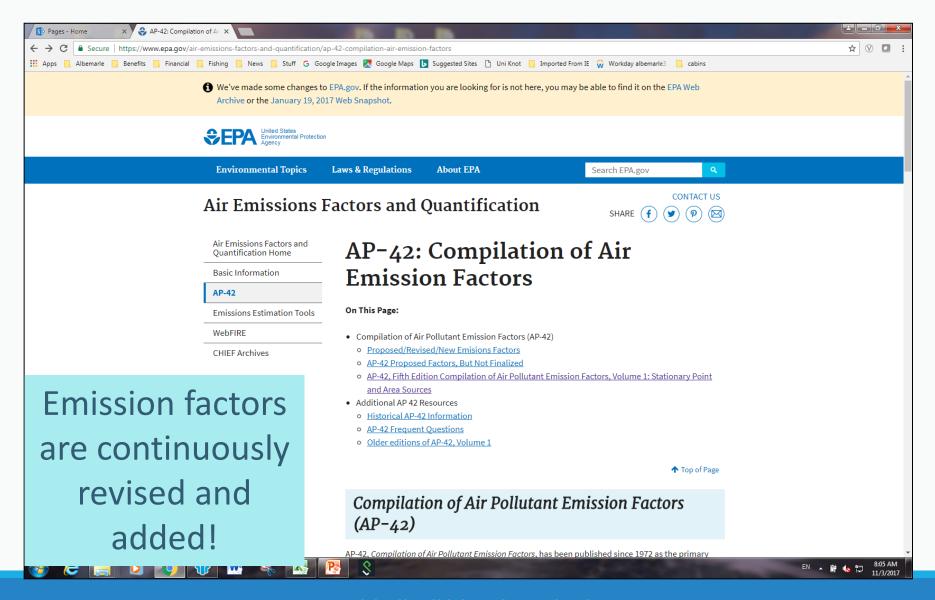

Measurement + Calculation

Fugitive VOC emissions calculation basis

- EPA Test Method 21 monitoring results
- EPA/TCEQ correlation equations
- Annual Leak Report

TABLE 2-9. SOCMI LEAK RATE/SCREENING VALUE CORRELATIONS

Equipment type	Correlation ^{a,b}
Gas valves	Leak rate (kg/hr) = $1.87E-06 \times (SV)0.873$
Light liquid valves	Leak rate (kg/hr) = $6.41E-06 \times (SV)^{0.797}$
Light liquid pumps ^C	Leak rate (kg/hr) = $1.90E-05 \times (SV)^{0.824}$
Connectors	Leak rate (kg/hr) = $3.05E-06 \times (SV)0.885$


bThese correlations predict total organic compound emission rates.

cThe correlation for light liquid pumps can be applied to compressor seals, pressure relief valves, agitator seals, and heavy liquid pumps.

Published Emission Factors

Emission Factor Example

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

Combustor Type (MMBtu/hr Heat Input) [SCC]	NO _x ^b		СО	
	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS)c	280	A	84	В
Uncontrolled (Post-NSPS) ^c	190	Α	84	В
Controlled - Low NO _x burners	140	A	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NOx burners/Flue gas recirculation	32	C	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	A	24	C
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

Factors Causing Year-to-Year Variations

Actual long-term changes in emissions

- Adding units or closing them
- Pollution prevention efforts practices/equipment.

Making or storing a different mix of products

For example, more volatile materials may evaporate to the air

Production/customer demand -- up or down

Maintenance and related shutdowns and startups

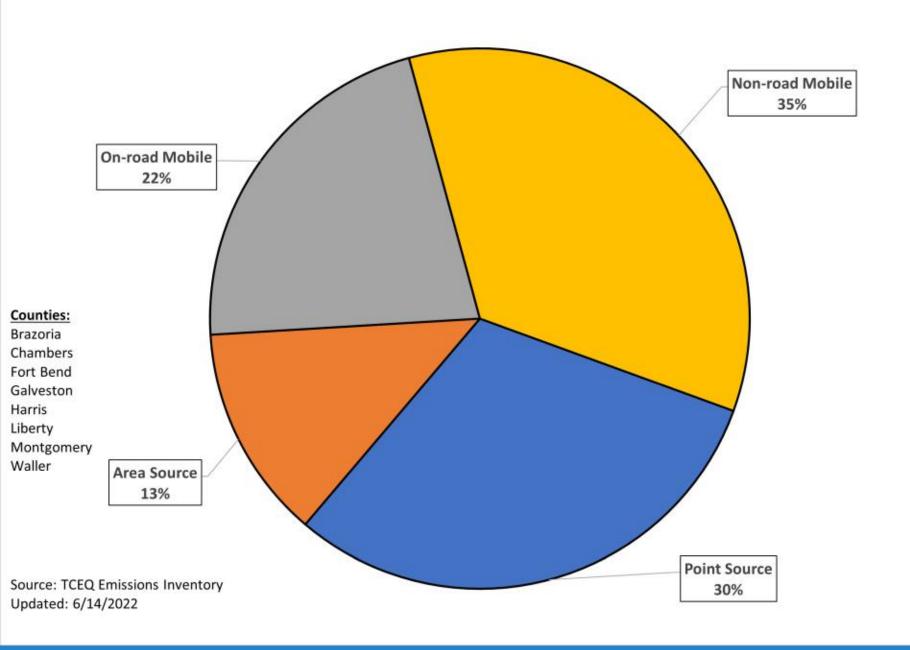
Changing number of plants in PCAC

Emission events: upsets, leaks and spills

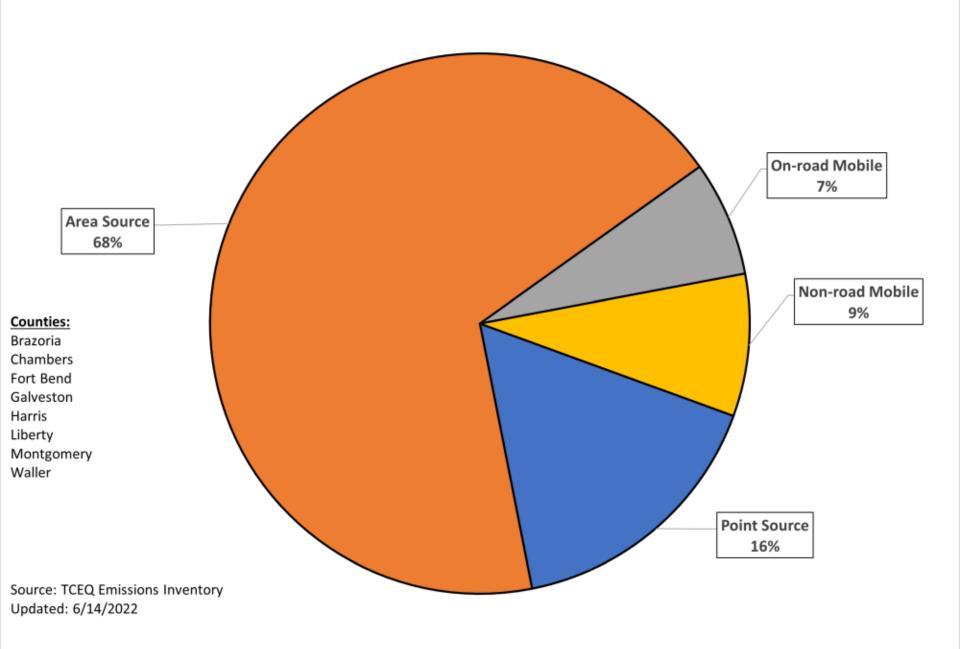
Changing calculation methods & emission factors

Audits – continuous improvement

Agency interactions – identify deficiencies


TCEQ NOx and VOC Emission Charts

TCEQ NOx and VOC Emission Charts


The pie charts on the following pages show the relative emissions of nitrogen oxides (NOx) and volatile organic compounds (VOCs) by source category. The charts are developed every three years based on the National Emissions Inventory and were last updated in 2020.

- <u>Point source</u> large stationary sources such as fossil fuel fired power plants, smelters, industrial boilers, petroleum refineries, and manufacturing facilities
- <u>Area source</u> small-scale industrial, commercial, and residential sources that generate emissions
- mobile source 2 types
 - On-Road automobiles, trucks, motorcycles, and other motor vehicles traveling on public roadways
 - ➤ Non-Road agriculture & construction equipment, aircraft, trains, drilling rigs, etc...

2020 Houston-Galveston-Brazoria Area NO_x Emissions

2020 Houston-Galveston-Brazoria Area VOC Emissions

If You Want to Know More

TCEQ: www.tceq.Texas.gov

EPA TRI Website

TRI Program Home page: www.epa.gov/tri

Houston Regional Monitoring: http://hrm.aecom.com/

EE = emissions event

RTO = regenerative thermal oxidizer to reduce emissions to the atmosphere.

FGRS = Flare Gas Recovery System

MSS = maintenance, shut down, and startup

SCR = Selective Catalytic Reduction

TO = thermal oxidizer

WWT= wastewater treatment

WWTP= wastewater treatment plant

- Emissions Inventory filed with TCEQ for all criteria pollutants (and their precursors) and hazardous air pollutants, such as benzene and 1,3-butadiene
- TRI Toxics Release Inventory, filed with EPA

Emission: Pollution discharged into the atmosphere from smokestacks, other vents, and surface areas of commercial or industrial facilities; from residential chimneys; and from motor vehicle, locomotive, or aircraft exhausts. (EPA)

Release: Any spilling, leaking, pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaching, dumping, or disposing into the environment of a hazardous or toxic chemical or extremely hazardous substance. (EPA)

Environment: air, water, groundwater, and land

LDAR

Leak Detection and Repair. Fugitive emissions are controlled by looking for leaks and fixing them. See gas meter (fugitives) vs. hot water heater (point sources). Delay of Repair (DOR) - common cause of fugitive emission increases when leaking component cannot be repaired without shutting down plant. More emissions would result from the shutdown than from delaying repair. Components can also placed on DOR if it would be unsafe to attempt repair with chemicals in the process piping or equipment.

 TPY

Tons Per Year

Criteria Pollutants and Precursors

Ozone Respiratory irritant that may form in the atmosphere when NOx and VOCs come together on still, sunny days.

NOx

Nitrogen Oxides. Nitrogen dioxide and other gases made of varying mixtures of nitrogen and oxygen. Formed when fuel is burned at high temperatures (EPA)

Criteria Pollutants and Precursors

VOCs

Volatile Organic Compounds. *Volatiles* evaporate rapidly. *Organic Chemicals or Compounds* are naturally occurring (animal or plant-produced) or synthetic substances containing mainly carbon, hydrogen, nitrogen, and oxygen. VOCs are any organic compounds that participate in atmospheric photochemical reactions except those designated by EPA as having negligible photochemical reactivity. (*EPA*). Photochemical reactions are influenced or initiated by light. There are hundreds of VOCs, including common ones like ethylene, propylene, benzene, and formaldehyde. VOCs are found in many household products and are thus an indoor air quality interest.

HRVOCs

Highly Reactive Volatile Organic Compounds. A subset of VOCs found to be more productive than other VOCs in forming ozone. TCEQ focus is ethylene, propylene, 1,3-butadiene, and butenes.

Criteria Pollutants and Precursors

- Carbon Monoxide. Formed when fuel is not burned completely.
- Total Suspended Particulates. Mixture of solid particles and liquid drops found in the air. Some particles, such as dust, dirt, soot, or smoke, are large or dark enough to be seen with the naked eye. Others are so small, they can only be detected using a microscope.
- SOx Sulfur Oxides (including sulfur dioxide and others in the family). Sulfur is prevalent in crude oil, coal, and ore that contains common metals like aluminum, copper, zinc, lead, and iron. SOx gases are formed when fuel containing sulfur, such as coal and oil, is burned; when gasoline is extracted from oil; or metals are extracted from ore.

HRM Houston Regional Monitoring. Monitors air on behalf of industry members.

HGB Houston – Galveston – Brazoria region

NAAQS National Ambient Air Quality Standards. States are required to meet these standards or bear the consequences. In the HGB area, Texas meets all but the ozone standard.

SIP State Implementation Plan. State's plan for bringing an area into attainment of the NAAQS.

Concentration The amount of pollutant detected by the monitors is reported in parts per million by volume

(ppm-v) or by parts per billion (ppb-v)

AMCVs Air Monitoring Comparison Values. Level of a chemical in air set to prevent short-term and long-term health effects and nuisance odor conditions. ESLs are used for evaluating air permitting models. AMCVs are used for evaluating air monitoring data

ESLs	Effects Screening Levels. If trends at an air monitor exceed the TCEQ ESL for a
	compound, the agency may place it on the Air Pollutant Watch List to determine
	the sources and how to bring about reductions

HAPs Hazardous Air Pollutants, the "air toxics" on which EPA focuses

CAMS TCEQ Continuous Ambient Monitoring Station

PAMS Photochemical Assessment Monitoring Station

Auto GC Automated gas chromatograph, continuous air monitoring equipment

FTIR Fourier Transform Infra-Red spectrometer, continuous air monitoring equipment

BTEX Benzene, Toluene, Ethylbenzene, Xylenes. Four HAPs serving as surrogates for tracking trends of HAPs

Benzene is a colorless liquid with a sweet odor. It evaporates into the air very quickly and dissolves slightly in water. It is highly flammable and is formed from both natural processes and human activities. Benzene is widely used in the United States; it ranks in the top 20 chemicals for production volume. Some industries use benzene to make other chemicals which are used to make plastics, resins, and nylon and other synthetic fibers. Benzene is also used to make some types of rubbers, lubricants, dyes, detergents, drugs, and pesticides. Natural sources of benzene include emissions from volcanoes and forest fires. Benzene is also a natural part of crude oil, gasoline, and cigarette smoke. It is a known human carcinogen. (From the federal Agency for Toxic Substances and Disease Registration)